
165

0022-4715/03/0700-0165/0 © 2003 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 112, Nos. 1/2, July 2003 (© 2003)

Extremal Reversible Measures for the Exclusion
Process

Paul Jung1

1 Department of Mathematics, University of California, Los Angeles, California 90095-1555;
e-mail: pjung@math.ucla.edu

Received September 29, 2002; accepted February 11, 2003

The invariant measures I for the exclusion process have long been studied and
a complete description is known in many cases. This paper gives characteriza-
tions of I for exclusion processes on Z with certain reversible transition kernels.
Some examples for which I is given include all finite range kernels that are
asymptotically equal to p(x, x+1)=p(x, x − 1)=1/2. One tool used in the
proofs gives a necessary and sufficient condition for reversible measures to be
extremal in the set of invariant measures, which is an interesting result in its
own right. One reason that this extremality is interesting is that it provides
information concerning the domains of attraction for reversible measures.
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1. INTRODUCTION

Given a countable set S and a corresponding probability transition func-
tion p(x, y) satisfying supy ;x p(x, y) < ., IPS (Liggett (8)) constructs and
describes the exclusion process on {0, 1}S. Its generator is given by the
closure of the operator W on D({0, 1}S), the set of all functions on {0, 1}S

that depend on finitely many coordinates. If f ¥ D({0, 1}S) and gxy is
defined as

gxy(u)=˛g(y) if u=x

g(x) if u=y

g(u) if u ] x, y



then

Wf(g)= C
g(x)=1, g(y)=0

p(x, y)[f(gxy) − f(g)].

The semigroup of this process will be denoted by S(t).
When p(x, y)=p(y, x) the process has been completely studied in

that a full description of its invariant measures is known as well as their
respective domains of attraction. The asymmetric exclusion process on the
other hand has been much more elusive. General classes of invariant mea-
sures are known in the two cases where p(x, y) is doubly stochastic (i.e.,
;x ¥ S p(x, y)=1 for all y ¥ S) or when there exists a reversible measure
p(x) > 0 on S (i.e., a measure satisfying p(x) p(x, y)=p(y) p(y, x)).
However, a complete description of I is known only in the three cases
when either

(a) p(x, y) is reversible and positive recurrent for either the particles
or holes (1’s or 0’s); (7)

(b) p(x, y) corresponds to certain random walks on Z; (3, 7) or
(c) p(x, y) corresponds to a birth and death chain on Z+. (7)

Almost nothing is known about the domains of attraction concerning
invariant measures in the asymmetric case, although we note here that
there are some nice theorems concerning the case where p(x, y) is an
asymmetric simple random walk on Z (see Liggett (9)).

Our purpose in this paper is to shed some more light on the problem
of classifying I and its respective domains of attraction for the asymmetric
exclusion process when a reversible measure p(x) exists for p(x, y). In
order to describe the results of this paper we must first discuss case (a) and
state a special case of (b) above.

We start by stating what is known for the mean zero case of (b). Let
nr be the product measure on {0, 1}S with marginals nr{g: g(x)=1}=r.
Liggett (7) uses a coupling of two exclusion processes to show that when
p(x, y)=p(0, y − x), ;x |x| p(0, x) < ., and ;x xp(0, x)=0 on Z the set
of extremal invariant measures is

Ie={nr: 0 [ r [ 1}. (1)

Before describing the invariant measures for case (a), we define some
extremal reversible invariant measures {n (n)} when a reversible measure
p(x) satisfying

C
x

p(x)/[1+p(x)]2 < . (2)
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exists. This family of extremal reversible measures was first discovered by
Liggett. In particular, he breaks down (2) into three cases and writes

1. If ;x p(x) < ., let An={g: ;x gx=n} for nonnegative integers n.

2. If ;x 1/p(x) < ., let An={g: ;x [1 − gx]=n} for nonnegative
integers n.

3. If ;x p(x)/[1+p(x)]2 < ., ;x p(x)=., and ;x 1/p(x)=.,
there exists a T … S for which ;x ¥ T p(x) < . and ;x ¨ T 1/p(x) < .. In
this case, let

An=3g: C
x ¥ T

g(x) − C
x ¨ T

[1 − g(x)]=n4

for integers n.

To define {n (n)}, let nc be the product measure with marginals nc{g: g(x)
=1}= cp(x)

1+cp(x) . Liggett shows that the measures

n (n)( · )=nc( · | An), n (.)( · )=d1, n (−.)( · )=d0

are the unique stationary distributions for the positive recurrent Markov
chains on An. A simple consequence of Theorem B52 in ref. 9 is that the
reversible measures {n (n)} are extremal in the set of invariant measures. For
the first two cases in the trichotomy of (2) above, these are the only extre-
mal invariant measures. These first two cases correspond exactly to (a)
above. Note that changing T in the third case of the trichotomy above
amounts to a relabeling of the sequence {n (n), n ¥ Z}.

Whenever a reversible measure p(x) on S exists, the product measures
{nc} are well-defined. Theorem VIII.2.1 in IPS tells us that these measures
are invariant for the exclusion process. Applying Kakutani’s Dichotomy
(e.g., p. 244 of ref. 4) we have that ;x p(x)/[1+p(x)]2=. is a necessary
and sufficient condition for the measures {nc: 0 [ c [ .} to be mutually
singular. Since all the results in this paper concern the reversible measures
{nc}, we will assume throughout the rest of the paper that p(x) satisfying
p(x) p(x, y)=p(y) p(y, x) exists.

In Section 2 we prove Theorem 2.1 which states that ;x p(x)/
[1+p(x)]2=. is exactly the situation in which the measures nc are
extremal invariant. Not only does this result have some nice applications,
but knowing that an invariant measure is extremal in the set of invariant
measures has always been an interesting question concerning particle
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systems. Examples of such results are Theorem III.1.17 in ref. 9 and
Theorem 1.4 in ref. 10. The main reason extremality of invariant measures
is interesting is its close connection with ergodicity. This is seen by the
application Theorem III.1.17 in ref. 9 to prove Theorem III.4.8 in ref. 9
concerning the tagged particle process; it is again seen by the applica-
tion of Theorem 1.4 in ref. 10 to certain central limit theorems given in
ref. 6. In particular, if the initial measure for a process is an extremal
invariant measure then the process evolution is ergodic with respect to time
shifts.

Sections 3 and 4 use Theorem 2.1 to extract information about the
invariant measures of the process on Z. In particular, Section 3 modifies
Liggett’s original proof of the result stated above Eq. (1) to obtain the
following result:

Theorem 1.1. Let Z be irreducible with respect to a transition
kernel p(x, y) for which there exists a reversible measure p(x). Suppose
qi(z) is a transition kernel such that ;z zqi(z)=0 and ;z |z| qi(z) < . for
i=1, 2, and suppose that

lim
K Q .

C
x \ 0

C
|z| \ |x − K|

|p(x, x+z) − q1(z)|=0 and

lim
K Q .

C
x [ 0

C
|z| \ |x+K|

|p(x, x+z) − q2(z)|=0.

(3)

(a) If ;x p(x)/[1+p(x)]2=. then Ie={nc: 0 [ c [ .}.

(b) If ;x p(x)/[1+p(x)]2 < . then Ie={n (n)}.

In essence the above theorem says that when the transition probabilities
are asymptotically translation invariant and have an asymptotic mean of
zero, the reversible measures are the only invariant measures. Theorem 1.1
is merely an extension (in the case where p(x) exists) of the theorem proved
by Liggett (7) which is stated above Eq. (1).

Condition (3) may seem somewhat daunting, but note that if
limx Q . p(x, x+z)=q1(z), limx Q − . p(x, x+z)=q2(z), and p(x, y) has
finite range (i.e., p(x, y) — 0 if |x − y| > n for some n), then (3) and
;z |z| q1(z) < . are both automatically satisfied. Also, the below condition
which is somewhat easier to grasp than (3) implies (3):

C
x \ 0

C
z

|p(x, x+z) − q1(z)| < . and C
x [ 0

C
z

|p(x, x+z) − q2(z)| < ..
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A typical situation for which the theorem holds is when the transition rates
are nearest-neighbor and are given by p(x, x+1)=p(x, x − 1)=1/2 except
for finitely many x.

Note that the premises of the theorem together with the assumption
that a reversible p(x) exists imply that qi(z) must be symmetric. To see this
suppose q1(z) is not symmetric. Also, assume that q1(z1) > q1(−z1) > 0 for
some z1 ¥ N. We can do this without loss of generality since q1(z) > 0
implies q1(−z) > 0 by the reversibility of p(x). The mean zero assumption
tells us there exists z2 ¥ N such that q1(z2) < q1(−z2). If z3 is a multiple of
both z1 and z2 then since p(x, x+z) Q q1(z) we can find x1 so that for
x > x1, p(x) < p(x+z3). But we can also find x2 so that for x > x2,
p(x) > p(x+z3), a contradiction. So q1(z) must be symmetric. The proof
that q2(z) is symmetric follows similarly.

The proof of the above theorem follows Liggett’s original outline
and does not actually require Theorem 2.1. However, the usefulness of
Theorem 2.1 is seen in the simplification of one part of Liggett’s original
proof.

In Section 4 we prove a theorem concerning the nearest-neighbor
exclusion process on Z. For the statement of the theorem we will need the
following definitions.

Let L− be the set of limit points of {p(x), x < 0} and L+ be the set of
limit points of {p(x), x > 0}.

Theorem 1.2. Suppose that inf |x − y|=1 p(x, y) > 0 for a nearest-
neighbor exclusion process on Z. Then nonreversible invariant measures
can exist only when either (a) L−={0} and L+={.} or (b) L−={.}
and L+={0}.

The above theorem in no way guarantees the existence of nonrever-
sible invariant measures as seen by the following example. Let

p(−1, −2)=p(−1, 0)=p(0, −1)=p(0, 1)=1/2,

p(x, x+1)=1 − p(x, x − 1)=
|x|+1
2 |x|

otherwise.
(4)

This transition gives us situation (a) in the theorem above. The reversible
invariant measures {nc} certainly exist, but it is easy to see that condition
(b) of Theorem 1.1 is satisfied by (4), therefore there are no nonreversible
invariant measures.
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A curious aside is as follows. If in this example we start this process
off with initial measure nr and take the limit of some converging sequence
of measures

1
Tn

F
Tn

0
nrS(t) dt (5)

then Theorem I.1.8 in IPS says that this limit is an invariant measure for
the process. In view of the previous discussion, this limit must converge to
some mixture of the extremal invariant measures {n (n), −. [ n [ .}. It
would be interesting indeed to find out which mixture (5) converges to.
Note here that we started off with an initial state that concentrates on an
uncountable number of states, but the limiting distribution concentrates on
a countable number of states (which may very well be just the point masses
of all 0’s and all 1’s).

If p(x, y) is an asymmetric, nearest-neighbor random walk kernel with
nonzero mean then we have one of the situations described in the theorem
above, and one might correctly guess that there exists some nonreversible
invariant measure. In fact, a well-known result of Liggett (7) proves that the
measures

{nr: 0 [ r [ 1} (6)

are invariant measures. Since any limit of (5) is invariant, we intuitively
might have expected this. More precisely, if there were no nonreversible
measures then this limit would presumably be a mixture of the reversible
measures nc. But it is intuitive that there is no mixture of nc’s to which this
limit could converge, leading us to believe that the limit converges to some
other measure.

We note here that the set of measures in (6) is the same as the set of
measures in (1) but are of an entirely different nature. In the setting of (1)
the measures {nr: 0 [ r [ 1} are reversible and constitute the entire set of
extremal invariant measures. On the other hand, under the current setting,
the measures {nr: 0 [ r [ 1} are not reversible and

Ie={nr: 0 [ r [ 1} 2 {nc: 0 [ c [ .}.

The discussion in the previous paragraphs might make us wonder for
which transition kernels a nonreversible invariant measure exists. To gain
more insight into the situation we introduce a concept known as the flux of
an invariant measure m. We will continue to assume that the transition
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probabilities are nearest-neighbor, but we will no longer assume they are
translation invariant. Define

flux(m)=p(x, x+1) m{g: g(x)=1, g(x+1)=0}

− p(x+1, x) m{g: g(x)=0, g(x+1)=1}. (7)

Let 1x(g)=g(x) be the indicator function of {g(x)=1}. By computing the
positive and negative terms of the left-hand side of > W1x dm=0 it can be
seen that flux(m) is independent of x.

When an invariant measure m is reversible it can easily be seen from
(7) that flux(m)=0. So if an invariant measure exists whose flux is nonzero
it must be nonreversible. For the process with p(x, x+1) > 1/2 and
p(x, x − 1)=1 − p(x, x+1), the invariant measures {nr: 0 [ r [ 1} all have
a positive flux with the flux being maximized when r=1/2 (a full discus-
sion of this can be found in either ref. 5 or Part III of ref. 9). This positive
flux is the reason why (6) is fundamentally different from (1). It would be
quite nice if one could prove that some nonreversible invariant measure
exists whenever p(x, x+1) > 1/2+E for all x. The E here serves the role of
providing some positive flux in the limit.

Finally, Section 5 will apply Theorem 2.1 to give information con-
cerning the domains of attraction (in the Cesaro sense) of reversible mea-
sures in the case where ;x p(x)/[1+p(x)]2=.. The results of Section 5
only give sufficient conditions for Cesaro convergence to an invariant
measure, but are nonetheless interesting since so little is known concerning
domains of attraction for the asymmetric exclusion process. The key
known results concerning domains of attraction of asymmetric exclusion
processes are stated in Andjel et al. (2) They concern the limiting distribution
of exclusion processes with asymmetric nearest-neighbor random walk
kernels when the initial measures are certain product measures. To get an
idea of how difficult it is to prove anything of this sort, we refer the reader
to ref. 2.

The fact that Theorem 5.1 concerns Cesaro convergence rather than
the usual weak convergence, while undesirable, is not so bad since many
results in particle systems concern Cesaro convergence (see Section I.1 in IPS).
One notable example of this is the main result of Andjel (1) which concerns
the Cesaro convergence of certain initial product measures when the tran-
sition kernel of the exclusion process is an asymmetric nearest-neighbor
random walk. In fact these results were later shown to be true for weak
convergence (this was the goal of Andjel et al. (2)). We note here that
Theorem 5.1 does not use the property of reversibility, therefore one can
apply the theorem to situations in which one knows that a particular
invariant measure is extremal in the set of invariant measures.
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2. EXTREMAL REVERSIBLE MEASURES

In this section we state and prove Theorem 2.1. The common tech-
nique used in the proof of this theorem and in the proofs of most of the
other results in this paper is the coupling technique. We now define the
basic coupling of gt and tt which lets the two exclusion processes move
together as much as possible. The generator for this coupling is the closure
of the operator W̃ defined on D({0, 1}S× {0, 1}S):

W̃f(g, t)= C
g(x)=t(x)=1, g(y)=t(y)=0

p(x, y)[f(gxy, txy) − f(g, t)]

+ C
g(x)=1, g(y)=0 and (t(y)=1 or t(x)=0)

p(x, y)[f(gxy, t) − f(g, t)]

+ C
t(x)=1, t(y)=0 and (g(y)=1 or g(x)=0)

p(x, y)[f(g, txy) − f(g, t)].

Theorem 2.1. Suppose S is irreducible with respect to p(x, y).
Then the measures nc are extremal invariant if and only if ;x p(x)/
[1+p(x)]2=..

Proof. The discussion on p. 383 of IPS shows that if ;x p(x)/
[1+p(x)]2 < . then the measures nc are not extremal invariant giving us
one direction of the theorem. We will prove the other direction.

Assume throughout that 0 < c < .. Since the measures nc are invariant
and since all bounded continuous functions can be approximated uniformly
by functions that depend on finitely many coordinates then by Theorem B52
in ref. 9, we need only show that for any two functions f and g which
depend on finitely many coordinates

lim
T Q .

1
T

F
T

0
En c

f(g0) g(gt) dt=F f dnc F g dnc.

We claim that to show the above equation holds, it is enough to show
that for any finite A … S and for mc

1, A( · )=nc( · | {g: g(x)=1 -x ¥ A})

lim
T Q .

1
T

F
T

0
mc

1, AS(t) dt=nc. (8)

To see this define the measures mc
z, A( · )=nc( · | {g(x)=z(x) -x ¥ A}) where

z is a configuration on {0, 1}A. We can write the measure nc as a linear
combination

nc= C
z ¥ {0, 1}A

azmc
z, A
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where we use the convention that z=i is the configuration in {0, 1}A such
that z(x)=i for all x ¥ A. For

fA=˛1 when g(x)=1 for all x in the finite set A

0 otherwise

we have that

lim
T Q .

1
T

F
T

0
En c

fA(g0) g(gt) dt= lim
T Q .

1
T

F
T

0
a1 F S(t) g(g) dmc

1, A dt

=F fA dnc F g dnc

which proves the claim.
Define mc

0, A similarly to the way we defined mc
1, A. If we assume a fixed

A then we can drop the subscript A so as to write mc
i =mc

i, A. The rest of the
proof will now argue that (8) holds.

Choose d > 0 and couple the processes gt and tt using the basic cou-
pling starting with measures mc

0 and mc
1 so that g0 and t0 disagree only for

x ¥ A. In particular, since the basic coupling is the coupling which allows gt

and tt to move together as much as possible, then gt and tt can differ at
most at n sites where |A|=n.

If there exists T̄ such that for all T > T̄

1
T

F
T

0
[mc

1S(t){t(0)=1} − mc
0S(t){g(0)=1}] dt [ d

then we must have that

lim
T Q .

1
T

F
T

0
mc

1S(t){t(0)=1} dt= lim
T Q .

1
T

F
T

0
mc

0S(t){g(0)=1} dt.

Keeping in mind the way that gt and tt are coupled, irreducibility then tells
us that

lim
T Q .

1
T

F
T

0
mc

1S(t) dt= lim
T Q .

1
T

F
T

0
mc

0S(t) dt.

But the measure nc lies stochastically between the left-hand side and the
right-hand side of the equation above, so in fact we must have that (8)
holds.

Extremal Reversible Measures for the Exclusion Process 173



We can therefore assume to the contrary that there exists a d > 0 and a
sequence {Tn} such that

1
Tn

F
Tn

0
[mc

1S(t){t(0)=1} − mc
0S(t){g(0)=1}] dt > d (9)

for all n.
Pick E > 0 so that

nc+E{t(0)=1} − nc − E{g(0)=1} < d/3.

Using the basic coupling once more, couple the processes gt and tt starting
off in the measures mc

1 and nc+E so that l1{(g, t): g(x) [ t(x) for all
x ¥ S0A}=1 where l1 is the coupling measure. If m̂c=nc( · | {g: g(x)=0
for some x ¥ A}) then

nc=cmc
1+(1 − c) m̂c

for c=nc{g: g(x)=1 -x ¥ A}. Couple the measures m̂c and nc+E in a way
similar to l1 so that we get another coupling measure l2.

Choose a subsequence {Tnk
} so that we can define some limiting

invariant measure

w1= lim
k Q .

1
Tnk

F
Tnk

0
l1S(t) dt.

Let nc
1 be the g-marginal measure of w1 so that in particular

nc
1= lim

k Q .

1
Tnk

F
Tnk

0
mc

1S(t) dt.

To complete the proof of the theorem we will need the following
lemma:

Lemma 2.2. nc+E \ nc
1.

Proof of Lemma 2.2. Let fx(g, t)=[1 − g(x)] t(x), Dm={(g, t):
g(x) > t(x) at exactly m sites}, and D=1m \ 1 Dm. If nc+E Â nc

1 then it must
be that w1(D) > 0. We claim that this implies

F
D

C
x

fx dw1=0.
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To prove the claim, assume to the contrary that >D ;x fx dw1 > 0 so
that there exist sites for which g(x) < t(x). Let M be the largest m for
which w1(Dm) > 0. Then by the irreducibility condition and by the fact that
there exist sites for which g(x) < t(x) we have w1S(t)(DM) < w1(DM) for
t > 0. But this is a contradiction to the invariance of w1 proving the
claim.

Now if the two processes gt and tt have the measures nc and nc+E

respectively then let w be the coupling measure for {(gt, tt)} which con-
centrates on nc [ nc+E. For this coupling, the w probability that fx(g, t)=1
for a given x is equal to the left-hand side below:

(c+E) p(x)
1+(c+E) p(x)

−
cp(x)

1+cp(x)
>

Ep(x)
[1+(c+E) p(x)]2 .

Since ;x p(x)/[1+p(x)]2=., by the Borel–Cantelli Lemma the w prob-
ability that ;x fx=. is equal to 1. The measure w1 is absolutely contin-
uous with respect to w since

w=cl1+(1 − c) l2=cw1+(1 − c) lim
k Q .

1
Tnk

F
Tnk

0
l2S(t) dt

where l2 is as defined above. Therefore >E ;x fx dw1=. for any set E
with positive w1 measure which contradicts >D ;x fx dw1=0 so it must be
that w1(D)=0 proving the lemma. L

We now turn back to the proof of the theorem. Since by the lemma we
have nc+E \ nc

1, then there exists a K such that for all k > K

1
Tnk

F
Tnk

0
mc

1S(t){g(0)=1} dt − nc+E{t(0)=1} < d/3.

If nc
0 is some limiting measure of

1
Tnkl

F
Tnkl

0
mc

0S(t) dt

then an argument similar to that used in Lemma 2.2 shows that nc − E [ nc
0.

There then exists an L such that for l > L

nc − E{g(0)=1} −
1

Tnkl

F
Tnkl

0
mc

0S(t){t(0)=1} dt < d/3.
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Altogether we have for l > L,

1
Tnkl

F
Tnkl

0
[mc

1S(t){t(0)=1} − mc
0S(t){g(0)=1}] dt < d

which contradicts inequality (9) so it must be that (8) holds completing the
proof of the theorem. L

3. THE ASYMPTOTICALLY MEAN ZERO PROCESS ON Z

In this section we prove Theorem 1.1. To do so we will need to define
I2 as the set of invariant measures for the basic coupling and I2e as its
extreme points.

Recall that fx(g, t)=[1 − g(x)] t(x). In order to simplify the notation
we further define the functions

hyx(g, t)=[1 − g(y)][1 − t(y)] fx(g, t),

gyx(g, t)=g(y) t(y) fx(g, t), and

fyx(g, t)=g(y)[1 − t(y)] fx(g, t).

In particular, for T a finite subset of S we have

W̃ 1 C
x ¥ T

fx(g, t)2=− C
x ¥ T, y ¥ S

(p(x, y)+p(y, x)) fyx(g, t)

+ C
x ¥ T, y ¨ T

[p(x, y) gxy − p(y, x) gyx]

+ C
x ¥ T, y ¨ T

[p(y, x) hxy − p(x, y) hyx]. (10)

Proof of Theorem 1.1. Let n ¥ I2 . Then > W̃(;x ¥ T fx) dn=0 for
each finite T … Z so that for T[m, n]={x ¥ Z : m [ x [ n} we get

C
x ¥ T[m, n], y ¥ Z

(p(x, y)+p(y, x)) F fyx dn

= C
x ¥ T[m, n], y ¨ T[m, n]

p(x, y) F (gxy − hyx) dn

+ C
x ¥ T[m, n], y ¨ T[m, n]

p(y, x) F (hxy − gyx) dn. (11)
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Notice that the left-hand side of this equation is increasing in n and − m, so
that when we take the limit as n Q . or as − m Q ., a limit exists.

Choosing E > 0 we can find N so that for n > N:

C
x > n+N

C
z < n − x

p(x, x+z)

[ C
x > n+N

C
z < n − x

|p(x, x+z) − q1(z)|+ C
|z| > N

|z| q1(z) <
E

3

C
0 < x < n

C
z > n − x+N

p(x, x+z)

[ C
0 < x < n

C
z > n − x+N

|p(x, x+z) − q1(z)|+ C
|z| > N

|z| q1(z) <
E

3

C
x [ 0

C
z > n+N − x

p(x, x+z)

[ C
x [ 0

C
z > n+N − x

|p(x, x+z) − q2(z)|+ C
|z| > N

|z| q2(z) <
E

3

and

C
x < − n − N

C
z > − x − n

p(x, x+z)

[ C
x < − n − N

C
z > − x − n

|p(x, x+z) − q2(z)|+ C
|z| > N

|z| q2(z) <
E

3

C
− n < x < 0

C
z < − x − n − N

p(x, x+z)

[ C
− n < x < 0

C
z < − x − n − N

|p(x, x+z) − q2(z)|+ C
|z| > N

|z| q2(z) <
E

3

C
x \ 0

C
z < − n − N − x

p(x, x+z)

[ C
x \ 0

C
z < − n − N − x

|p(x, x+z) − q1(z)|+ C
|z| > N

|z| q1(z) <
E

3
.

Since the construction of the exclusion process assumes that supy ;x p(x, y)
is finite (see Chapter VIII in IPS) and since > (gxy − hyx) dn [ 1, the right-
hand side sums in (11) above are absolutely convergent for any fixed n and m.

Now by the inequalities above and by (3) we can pass to the limit in
(11) so as to write
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lim
m Q − .

lim
n Q .

C
x ¥ T[m, n], y ¥ Z

(p(x, y)+p(y, x)) F fyx dn

= lim
n Q .

C
x ¥ T[0, n], y > n

5q1(y − x) F (gxy − hyx) dn+q1(x − y) F (hxy − gyx) dn6

+ lim
m Q − .

C
x ¥ T[m, 0], y < m

5q2(y − x) F (gxy − hyx) dn+q2(x − y) F (hxy − gyx) dn6 .

The right-hand side above is equal to

lim
l Q .

1
l

C
l

n=1
C

x ¥ T[0, n], y > n

5q1(y − x) F (gxy − hyx) dn+q1(x − y) F (hxy − gyx) dn6

+ lim
k Q .

1
k

C
−k

m=−1
C

x ¥ T[m, 0], y < m

5q2(y − x) F (gxy − hyx) dn

+q2(x − y) F (hxy − gyx) dn6 . (12)

We will devote the next few paragraphs to showing that these limits are in
fact equal to zero.

Define the measures n+ and n− by choosing a subsequence nj so that
the following limits exist:

n+=lim
j Q .

1
nj

C
1 [ x [ nj

nx

n−=lim
j Q .

1
|n−j |

C
− 1 \ x \ n− j

nx

where nx is the x translate of n. In the partial sums of (12) above, for j large
enough each term

qi(y − x) F (gxy − hyx) dn

appears |y − x| times when qi(y − x) > 0, so we can write (12) as

C
z ¥ Z

+

5zq1(z) F (goz − hzo) dn+− zq1(−z) F (gzo − hoz) dn+6

+ C
z ¥ Z

−

5− zq2(z) F (goz − hzo) dn−+zq2(−z) F (gzo − hoz) dn−6 (13)
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Now consider two coupled processes with transition rates equal to
q1(z) and q2(z) respectively. The measures n+ and n− are translation
invariant and are also invariant measures for the coupled process with
respect to q1(z) and q2(z) respectively. In particular if W̃i is the generator
for the coupled process of qi(z), W̃ is the generator for the coupled process
of p(x, y), and

f(A, B)=˛1 when g(x)=t(y)=1 for all x in the finite set A,
y in the finite set B

0 otherwise

then

F W̃1 f(A, B) dn+= lim
k Q .

1
nk

C
1 [ x [ nk

F W̃1 f(A+x, B+x) dn

= lim
k Q .

1
nk

C
1 [ x [ nk

F W̃f(A+x, B+x) dn=0

where A+x is the x translate A.
By Lemma VIII.3.2 in IPS we have > fxy dn+=0 for all x, y. We

can therefore write n+ as n+=ln1+(1 − l) n2 where n1 concentrates on
{(g, t): g < t} and n2 on {(g, t): g \ t}. Then

F (goz − hzo) dn+=l F (goz − hzo) dn1

=l[n1{(g, t): g(0)=1, g(z)=0}

− n1{(g, t): g(0)=t(0)=1, g(z)=t(z)=0}

+n1{(g, t): g(0)=t(0)=1, g(z)=t(z)=0}

− n1{(g, t): t(0)=1, t(z)=0}]

=l[n1{(g, t): g(0)=1, g(z)=0}

− n1{(g, t): t(0)=1, t(z)=0}].

Because n+ is translation invariant and invariant for the process with
rates q1(z), n1 is also since n1 and n2 are mutually singular and n+=ln1+
(1 − l) n2. By Theorem VIII.3.9 in IPS, the marginals of n1 are exchange-
able, thus the right-hand side above is equal to a constant c+ as is the
expression > (gzo − hoz) dn+. Similarly we have that > (goz − hzo) dn− and
> (gzo − hoz) dn− are equal to a constant c−. Now by the mean zero
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assumption, we have that expression (13) is equal to 0, but since (12) and
(13) are equal, we have in fact that

C
y ¥ T

(p(x, y)+p(y, x)) F fxy dn=0 (14)

for each finite T … Z.
By irreducibility, if > fxy dn > 0 for some x, y then > fxy dn > 0 for

all x, y. Choose x0 and y0 such that p(x0, y0)+p(y0, x0) > 0. By (14) and
the nonnegativity of > fxy dn, we must have that > fx0y0

dn=0 and thus
> fxy dn=0 for all x, y. Therefore n ¥ I2 implies that

n{(g, t): g < t or g \ t}=1.

If ;x p(x)/[1+p(x)]2=. we can use Theorem 2.1 to pick m ¥ Ie and
nc ¥ Ie. On the other hand if ;x p(x)/[1+p(x)]2 < . we can use the
analysis in the introduction to pick m ¥ Ie and n (n) ¥ Ie. Since n{(g, t):
g < t or g \ t}=1, Proposition VIII.2.13 in IPS tells us there exists a
coupling with invariant measure n where n has marginals m [ nc or m \ nc in
the first case and marginals m [ n (n) or m \ n (n) in the second case.

Take first the case where ;x p(x)/[1+p(x)]2=.. Supposing that
m ] n0 ] n., we have that there exists a c0 for which nc1 [ m for all c1 < c0

and m [ nc2 for all c2 > c0. By the continuity of the one parameter family of
measures {nc} it must be that m=nc0.

If ;x p(x)/[1+p(x)]2 < . then we have three cases (i), (ii), and (iii)
as given in the introduction. Theorem VIII.2.17 in IPS proves the first two
cases so we will consider only (iii). If m ] n (−.) ] n (.) then there exists an
n ¥ Z such that either m=n (n) or n (n) < m < n (n+1). If the latter is true then
m concentrates on A={g: ;x ¥ T g(x) < ., ;x ¨ T [1 − g(x)] < .} for some
T … S which means that it must be a mixture of stationary distributions for
the Markov chains on An as described in the introduction. But m ¥ Ie so it
must in fact be equal to some n (n) completing the proof. L

We include in this section two more results which have proofs similar
to that of Theorem 1.1. We first need the following definition: given tran-
sition probabilities p(x, y) define the boundary of a set T to be

“T={x ¨ T : p(x, y) > 0 for some y ¥ T}.

Proposition 3.1. Let S be irreducible with respect to p(x, y) and sup-
pose that ;x p(x)/[1+p(x)]2=.. If there exists a sequence of increasing
finite sets Tn such that 1 Tn=S and either limn Q . ;x ¥ “Tn

p(x)=0 or
limn Q . ;x ¥ “Tn

1/p(x)=0, then Ie={nc: 0 [ c [ .}.
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Proof. Choose m ¥ Ie. If limn Q . ;x ¥ “Tn
p(x)=0 then couple gt

with tt so that they have the measures m and nc respectively. If
limn Q . ;x ¥ “Tn

1/p(x)=0 then couple them vice versa. We will prove the
case in which limn Q . ;x ¥ “Tn

p(x)=0. The other case follows similarly.
By (10),

C
x ¥ Tn, y ¥ S

[p(x, y)+p(y, x)] F fyx dn

= C
x ¥ Tn, y ¨ Tn

p(x, y) F (gxy − hyx) dn+ C
x ¥ Tn, y ¨ Tn

p(y, x) F (hxy − gyx) dn.

Just as in the above proof, the left-hand side of this equation is increasing
in n so that a limit exists as n Q .. The right-hand side above goes to 0 as
n Q . since

C
x ¥ Tn, y ¨ Tn

p(x, y) F (gxy − hyx) dn+ C
x ¥ Tn, y ¨ Tn

p(y, x) F (hxy − gyx) dn

[ C
x ¥ Tn, y ¨ Tn

p(x, y) F fy dn+ C
x ¥ Tn, y ¨ Tn

p(y, x) F fy dn

[ C C
y ¥ “Tn

F fy dn+ C
y ¥ “Tn

F fy dn [ C C
y ¥ “Tn

p(y)+ C
y ¥ “Tn

p(y).

Here C=supy ;x p(x, y) which is finite by the assumptions in the intro-
duction.

Irreducibility now gives us > fxy dn=0 for all x, y. The rest of the
proof just follows that of Theorem 1.1. L

Note that if we change the hypothesis ;x p(x)/[1+p(x)]2=. to
;x p(x)/[1+p(x)]2 < . then Theorem VIII.2.17 in IPS says that Ie=
{n (n): 0 [ n [ .}.

Corollary 3.2. If in Theorem 1.1 we replaced condition (3) with the
condition that p(x, y) has finite range, limx Q +. p(x, x+z)=q1(z), and
limx Q − . p(x) equals 0 or . (or alternatively limx Q − . p(x, x+z)=q2(z),
and limx Q +. p(x) equals 0 or .) then the result still holds.

Proof. Replace expression (12) in the proof of Theorem 1.1 with

lim
k Q .

1
k

C
k

n=1
C

x ¥ T[0, n], y > n

5q1(y − x) F (gxy − hyx) dn+q1(x − y) F (hxy − gyx) dn6

+ lim
m Q − .

C
x ¥ T[m, 0], y < m

5p(x, y) F (gxy − hyx) dn+p(y, x) F (hxy − gyx) dn6 .
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The proofs of Theorem 1.1 and Proposition 3.1 imply that this expression
is 0. The rest is proven above. L

Before moving on to the next section let us discuss what the above
results tell us in the case where p(x, y) has finite range on Z. Proposition 3.1
together with Theorem VIII.2.17 in IPS says that if lim |x| Q . p(x) equals 0
or . then the reversible measures are the only invariant measures. If the
limits limx Q . p(x) and limx Q − . p(x) exist and one of them is nonzero and
finite, then the combination of Theorem 1.1 and Corollary 3.2 imply that
the only invariant measures are the reversible ones. All together we have
the following: if p(x) exists and has limits in both directions for the finite
range exclusion process on Z, then unless the limit is 0 in one direction and
. in the other direction, the only invariant measures are the reversible
ones. Of course, as seen in an example in the introduction, it is also pos-
sible to have limx Q . p(x, x+z)=q1(z) and limx Q − . p(x, x+z)=q2(z) as
given in Theorem 1.1 and at the same time have the limit of p(x) to be
0 in one direction, . in the other. In those cases Theorem 1.1 rules out
nonreversible invariant measures. A similar comment can be made for
Corollary 3.2. We remind the reader, however, that if the transition prob-
abilities are translation invariant with a drift so that the limit of p(x) is 0
in one direction and . in the other direction, then Liggett (7) tells us that
{nr: 0 [ r [ 1} is a class of nonreversible invariant measures.

4. THE NEAREST-NEIGHBOR PROCESS ON Z

We now restrict our attention to the nearest-neighbor case. More
specifically, assume throughout this section that we are dealing with the
irreducible nearest-neighbor exclusion process on Z (p(x, y)=0 if and only
if |x − y| > 1). In this case, a reversible p(x) always exists so we need not
make this assumption. Similar to the discussion at the end of the last
section, we will show that if inf |x − y|=1 p(x, y) > 0 then the only possible
nonreversible measures are in the case where the limit of p(x) is 0 in one
direction and . in the other direction.

In order to prove the next two propositions we need the following
lemma which appears in a slightly different form as Corollary 5.2 in
Liggett: (7)

Lemma 4.1 (Liggett). If inf |x − y|=1 p(x, y) > 0 and n ¥ I2e, then
exactly one of the following holds:

(a) n{(g, t): g=t}=1,

(b) n{(g, t): g [ t, g ] t}=1,
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(c) n{(g, t): g \ t, g ] t}=1,

(d) n(B)=1,

(e) n{(g, t): (t, g) ¥ B}=1,

where B={(g, t): ,x ¥ Z such that g(y) [ t(y) for all y < x, g(y) < t(y)
for some y < x, g(z) \ t(z) for all z \ x, g(z) > t(z) for some z \ x}.

Proposition 4.2. If inf |x − y|=1 p(x, y) > 0 and p(x) has some finite,
nonzero limit point as x goes to . and some finite, nonzero limit point as x
goes to − ., then Ie={nc: 0 [ c [ .}.

Proof. The assumptions imply that ;x p(x)/[1+p(x)]2=. so
Theorem 2.1 tells us Ie ‡ {nc: 0 [ c [ .}. We will show the reverse con-
tainment.

Choose a sequence {nk} extending in both directions so that finite,
nonzero limits of p(nk) exist. For a measure m on {0, 1}Z the set of limit
points L+ of {m{t(nk)=1}, k > 0} satisfies one of the following properties:

(i) L+={1} or L+={0}.

(ii) L+={1, 0}.

(iii) L+ contains some limit point between 0 and 1.

The same is true for the set of limit points L− of {m{t(nk)=1}, k < 0}.
Now suppose we couple nc with another extremal invariant measure me,

the two measures corresponding to the processes gt and tt respectively.
Since Theorem 2.1 tells us that nc is extremal, Section VIII.2 in IPS implies
there exists a coupling measure such that n ¥ I2e.

If me satisfies condition (i) for both L+ and L− then there are two
possibilities: either L+=L− or L+ ] L− . Suppose first that L+=L− ={1}
for me. If in this case we have that me{t(z)=1} < 1 for some z then we can
choose c < . large enough so that nc{g(z)=1} > me{t(z)=1}. But this
contradicts the assumption that nc{g(nk)=1}=cp(nk)/[1+cp(nk)] has
limits less than 1 for k going to . and − .. To see this suppose the cou-
pling measure satisfies n(B)=1 as defined in Lemma 4.1. Given

0 < E < 1 − lim
k Q .

cp(nk)/[1+cp(nk)] (15)

we can choose K large enough so that

1 − E < n{(g, t): ,x < K such that g(y) [ t(y) -y < x, g(y) < t(y)

for some y < x, g(z) \ t(z) -z \ x, g(z) > t(z) for some z \ x}.
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This, however, contradicts L+=1. Similarly we cannot have that n{(g, t):
(t, g) ¥ B}=1. So Lemma 4.1 tells us that g [ t which contradicts
nc{g(z)=1} > me{t(z)=1}. It must be that me=n.. A similar argument
shows that if L+=L− ={0} for me then me=n0.

Consider the second case where L− ] L+; without loss of generality we
will assume that L− ={0}.

We claim that given E > 0, we can find n such that me{t(n)=0} < E

and me{t(n+1)=0} < E. To see this suppose that for some E > 0 there
exists no n for which this is true. Then since L+={1}, there are infinitely
many x > 0 for which me{t(x)=0} < E/4 and infinitely many y > 0 for
which me{t(y)=0} \ E. Choosing nc so that limk Q . cp(nk)/[1+cp(nk)]=
1 − E/2 gives us a contradiction to Lemma 4.1 and thus proves the claim.

Given the same E > 0 we can choose m < n so that me{t(m − 1)=1}
< E. Since we have that n ¥ I2e then > W̃(;x ¥ T fx) dn=0 for each finite
T … Z. By (10),

C
m [ x [ n, y ¥ Z

(p(x, y)+p(y, x)) F fyx dn

= C
x=m or n, y=m − 1 or n+1

5p(x, y) F (gxy − hyx) dn+p(y, x) F (hxy − gyx) dn6

(16)

which is increasing in n and − m.
Due to our choice of m and n above, > hn, n+1 dn < E and me{t(m − 1)

=1} < E; moreover P(A) − P(A 5 B 5 C) [ P(Bc)+P(Cc) implies that
nc{g(n+1)=1, g(n)=0} − > gn+1, n dn < 2E so that

C
m [ x [ n, y ¥ Z

(p(x, y)+p(y, x)) F fyx dn

< p(n, n+1) F gn, n+1 dn − p(n+1, n) F gn+1, n dn+3E

< p(n, n+1) nc{g(n)=1, g(n+1)=0}

− p(n+1, n) nc{g(n)=0, g(n+1)=1}+5E.

By the reversibility of nc

p(n, n+1) nc{g(n)=1, g(n+1)=0}=p(n+1, n) nc{g(n)=0, g(n+1)=1}

so Eq. (16) is in fact equal to 0. Since we have assumed here that L− ={0}
and L+={1} for me then choosing 0 < c < . gives us a contradiction.
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Suppose me satisfies condition (ii) for either L+ or L− so that either
L+={0, 1} or L− ={0, 1}. Choose nc with 0 < c < .. Again we contradict
Lemma 4.1.

Combining all the above arguments we have that either me=n0,
me=n., or me satisfies (iii) in some direction. Assuming the latter we can,
without loss of generality, choose 0 < c0 < . so that

lim
k Q .

c0p(nk)/[1+c0p(nk)]=lim
l Q .

me{t(nkl
)=1}.

For all c > c0,

lim
k Q .

cp(nk)/[1+cp(nk)] > lim
l Q .

me{t(nkl
)=1}.

By Lemma 4.1 either me [ nc or n(B)=1 where B is defined in the lemma.
Similarly, for all c < c0, either me \ nc or n{(g, t): (t, g) ¥ B}=1. Combin-
ing these two arguments gives nc1 [ me [ nc2 for all c1 < c0 < c2. By the con-
tinuity of the one parameter family of measures nc, me=nc0. L

Proposition 4.3. If inf|x − y|=1 p(x, y) > 0, limx Q . p(x)=., and p(x)
has a finite, nonzero limit point as x goes to − ., then Ie={nc: 0 [ c [ .}.

Proof. Again, by Theorem 2.1 we need only show that Ie … {nc: 0 [

c [ .}.
We argue first that without loss of generality we can assume the limit

points of {p(x), x < 0} are all finite. Assume to the contrary that . is a
limit point. For any R > 0 we can find x < − R such that min(p(x),
p(x+1)) > R since inf |x − y|=1 p(x, y) > 0. The conditions of Proposition 3.1
are then satisfied so that Ie={nc: 0 [ c [ .} holds.

Couple nc with another extremal invariant measure me, the two mea-
sures corresponding to the processes gt and tt respectively. As argued
above there exists a coupling measure such that n ¥ I2e.

Let L− be the the set of limit points of {me{t(x)=1}, x < 0}. Note
that L− is slightly different from L− described in Proposition 4.2 in that L−

is the set of limit points for a subset of {me{t(x)=1}, x < 0}. L− satisfies
one of the following properties:

(i) L− contains some limit point between 0 and 1.

(ii) L−={1, 0}.

(iii) L−={1}.

(iv) L−={0}.

The same is true for the set L+ of limit points {me{t(x)=1}, x > 0}.
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Suppose L− satisfies (i). Choose a sequence xn Q − . so that 0 <
limn Q . me{t(xn)=1} < 1 exists. Since we can assume that the limit points
of {p(x), x < 0} are all finite, there exists a subsequence {xnk

} such that
limk Q . p(xnk

) < . exists.
Consider the two cases where limk Q . p(xnk

)=0 and where limk Q . p(xnk
)

> 0. Assume the latter case first. Choose 0 < c0 < . so that

lim
k Q .

c0p(xnk
)/[1+c0p(xnk

)]= lim
n Q .

me{t(xn)=1}.

For all c > c0,

lim
k Q .

cp(xnk
)/[1+cp(xnk

)] > lim
n Q .

me{t(xn)=1}.

Using the argument at the end of Proposition 4.2, we have that for all
c1 < c0 < c2, nc1 [ me [ nc2. Consequently, it must be that me=nc0.

Now assume that limk Q . p(xnk
)=0 so that for all 0 < c < . the cou-

pling satisfies either nc [ me or n{B}=1 where B is given in Lemma 4.1. If
nc [ me for all 0 < c < . then me=n., a contradiction to L− satisfying (i).
So it must be that n{B}=1.

We claim that for any r < 1 there exists m < 0 such that me{t(m)
=1} > r and me{t(m − 1)=1} > r. By the hypothesis of the theorem we
can choose a sequence {xl} going to − . so that 0 < liml Q . p(xl) < .

exists. If inf |x − y|=1 p(x, y) > p then choose c so that

lim
l Q .

cpp(xl)
1+cpp(xl)

> r+
1 − r

2
.

Since p(xl − 1) > pp(xl), it follows that the set of limit points of
{ cp(xl − 1)

1+cp(xl − 1), l > 0} is bounded below by r+1 − r
2 . Now since n{B}=1 there

exists a K such that l > K implies me{t(xl)=1} > r and me{t(xl − 1)=1}
> r which proves the claim.

Since we have that n ¥ I2e then > W̃(;x ¥ T fx) dn=0 for each finite
T … Z. By (10),

C
m [ x [ n, y ¥ Z

(p(x, y)+p(y, x)) F fyx dn

= C
x=m or n, y=m − 1 or n+1

5p(x, y) F (gxy − hyx) dn+p(y, x) F (hxy − gyx) dn6

which is increasing in n and − m.
Using the claim above along with the fact that limx Q . p(x)=., we

can argue just as we argued in the case where L− ] L+ of (i) in Proposi-
tion 4.2, to get
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C
m [ x [ n, y ¥ Z

(p(x, y)+p(y, x)) F fyx dn

< p(m, m − 1) F gm, m − 1 dn − p(m − 1, m) F gm − 1, m dn+3E

< p(m, m − 1) nc{g(m)=1, g(m − 1)=0}

− p(m − 1, m) nc{g(m)=0, g(m − 1)=1}+5E.

By the reversibility of nc the left-hand side must be 0, but this contradicts
n{B}=1.

Suppose L− satisfies condition (ii). Choosing nc with 0 < c < . gives
us a contradiction to Lemma 4.1.

If L− satisfies condition (iii) then we will handle the two cases (a)
L+={1} and (b) L+ ] {1}. Considering case (a) if we switch the coupling
so that me corresponds to gt then we have that the right-hand side of the
following inequality goes to 0:

C
|x|=n, |y|=n+1

p(x, y) F (gxy − hyx) dn+ C
|x|=n, |y|=n+1

p(y, x) F (hxy − gyx) dn

[ C
|x|=n, |y|=n+1

(p(x, y)+p(y, x)) F fy dn. (17)

By (10) and by irreducibility we get > fxy dn=0 for all x, y. The measure
me must lie stochastically above all nc for all finite c and must therefore be
equal to n..

If (b) holds then we refer the reader to the argument given above in
the case where L− satisfies (i) and limk Q . p(xnk

)=0.
Finally suppose that (iv) holds so that L−={0}. If L+ satisfies (i) or

(ii) then by Lemma 4.1, me [ nc for all c > 0 so that me=n0, a contradiction.
If L+ satisfies (iv) then similarly me=n0. Let L+ satisfy (iii) so that
L+={1}. For a given z choose c small enough so that nc{g(z)=1} <
me{t(z)=1}. We thus have that n{(g, t): (t, g) ¥ B}=1 as given in
Lemma 4.1. But by (10) and (17), for a given E > 0 we can find − m and n
large enough so that

C
m [ x [ n, y ¥ Z

(p(x, y)+p(y, x)) F fyx dn < E

which of course contradicts n{(g, t): (t, g) ¥ B}=1. L
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Proof of Theorem 1.2. Note first that since inf |x − y|=1 p(x, y) > 0
then it cannot be that L− or L+ is equal to {0, .}. In light of this fact, if
either L− or L+ contains a finite, nonzero point then Proposition 4.2 and
analogs of Proposition 4.3 imply there are no nonreversible measures. If
L+=L−={0} or L+=L−={.} then Proposition 3.1 implies there are
no nonreversible measures. L

5. A RESULT CONCERNING DOMAINS OF ATTRACTION

Theorem 5.1. Let ;x p(x)/[1+p(x)]2=. and let w be a proba-
bility measure on [0, .]. Also, assume that nc is a family of invariant
measures indexed by c \ 0 each of which is in Ie. Suppose {mc} is a family
of probability measures on {0, 1}S such that for each 0 [ c [ ., mc is
absolutely continuous with respect to nc. If

m=F
.

0
mcw(dc) and n=F

.

0
ncw(dc) (18)

then limT Q .

1
T >T

0 mS(t) dt exists and is equal to n.

Proof. For a fixed c we first prove that

lim
T Q .

1
T

F
T

0
mcS(t) dt=nc. (19)

Let P be the set of all measures. By the compactness of P we can
choose a sequence of times such that

lim
n Q .

1
tn

F
tn

0
mcS(t) dt (20)

converges in distribution to some measure l. Pick a continuous (and there-
fore bounded) function f on {0, 1}S with ||f|| [ 1 and let g be the Radon–
Nikodym derivative of mc with respect to nc. Given E > 0 we have that for n
large enough

: 1
tn

F
tn

0
F (S(t) f ) g dnc dt − F f dl : < E/3.

We can choose a simple function

ĝ= C
N

k=1
ck1Ek
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approximating g such that 1k Ek={0, 1}S, ĝ \ 0, > ĝ dnc=1, and
> |g − ĝ| dnc < E/3. Since ||S(t) f|| [ ||f|| [ 1 this gives us

: 1
tn

F
tn

0
F (S(t) f ) g dnc dt −

1
tn

F
tn

0
F (S(t) f ) ĝ dnc dt : [ F |g − ĝ| dnc < E/3.

Without loss of generality we can henceforth assume that nc(Ek) > 0
for each k. Define the measure mk concentrating on Ek by letting

mk(A)=
nc(A 5 Ek)

nc(Ek)

If we think of ĝ as the Radon–Nikodym derivative of some measure lE

with respect to nc then we can write

C
N

k=1
nc(Ek) mk=nc and C

N

k=1
cknc(Ek) mk=lE.

We can now find a subsequence {tnl
} such that the following limits

exist for each k:

lim
l Q .

1
tnl

F
tnl

0
mkS(t) dt=nk.

Moreover, Proposition I.1.8 in IPS tells us nk ¥ I. Since nc is extremal
invariant and since ;k \ 1 nc(Ek) nk=nc, it must be that nk=nc for each k.
This then yields

C
N

k=1
cknc(Ek) nk=lim

l Q .

1
tnl

F
tnl

0
lES(t) dt=nc

which gives us

: 1
tnl

F
tnl

0
F (S(t) f ) ĝ dnc dt − F f dnc

: < E/3

for l large enough.
Combining the three inequalities we have

:F f dl − F f dnc
: < E.
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But E > 0 is arbitrary so it must be that > f dl=> f dnc for each continu-
ous f with ||f|| [ 1 which implies that (20) is equal to nc. Now let Mn be the
closure of the set of measures

3 1
T

F
T

0
mcS(t) dt : T \ n4 .

Using the compactness of P along with the fact that {tn} is an arbitrary
sequence of times causing convergence in (20), we have that 4n ¥ N Mn=nc

proving (19).
To finish the proof note that since ||S(t) f|| [ ||f||, we can use the

Dominated Convergence Theorem together with Fubini’s Theorem to show
that

lim
T Q .

1
T

F
T

0
F

.

0
F S(t) f dmc w(dc) dt=F f dn. L

For the following corollary let na be the product measure with margi-
nals 0 < na{g: g(x)=1}=a(x) < 1 for a(x) a function on S.

Corollary 5.2. Suppose ;x p(x)/[1+p(x)]2=.. If ;x |a(x)− cp(x)
1+cp(x) |

< . then

lim
T Q .

1
T

F
T

0
naS(t) dt=nc. (21)

Proof. Let b(x)= cp(x)
1+cp(x) , mx=min[a(x), b(x)], and Mx=max[a(x),

b(x)]. We then have

1 − |a(x) − b(x)|=1 − Mx+mx

=[(1 − Mx)(1 − Mx)]1/2+(mxmx)1/2

[ [(1 − Mx)(1 − mx)]1/2+(mxMx)1/2

=[(1 − a(x))(1 − b(x))]1/2+(a(x) b(x))1/2.

Since ;x |a(x) − b(x)| < . then

D
x

{(a(x) b(x))1/2+[(1 − a(x))(1 − b(x))]1/2} \ D
x

{1 − |a(x) − b(x)|} > 0.

An application of Kakutani’s Dichotomy tells us that na is absolutely con-
tinuous with respect to nc which completes the proof. L
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We remark here that if a(x) and b(x) are both bounded away from 0
and 1 then Kakutani’s Dichotomy tells us that ;x [a(x) − b(x)]2 < . is a
necessary and sufficient condition for na to be absolutely continuous with
respect to nc (e.g., p. 245 of ref. 4).
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